THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010H/I/J University Mathematics 2017-2018 Assignment 3 Due Date: 23 Feb 2018 (Friday)

1. Evaluate each of the following limits.

(a)
$$\lim_{x \to 1} \frac{1-x}{2-\sqrt{x^2+3}}$$

(b)
$$\lim_{x \to \pi} \frac{\sin x}{x-\pi}$$

(c)
$$\lim_{x \to 0} \frac{\sin 3x}{\tan 6x}$$

(d)
$$\lim_{x \to +\infty} \sqrt{4x^2+x+1} - 2x$$

(e)
$$\lim_{x \to +\infty} \left(\frac{x+3}{x-2}\right)^x$$

If $f(x) = \frac{|x-2|}{x^2-4}$, evaluate

(a)
$$\lim_{x \to 2^{-}} f(x)$$

(b)
$$\lim_{x \to 2^{+}} f(x)$$

(c)
$$\lim_{x \to -2} f(x)$$

2.

3. Evaluate the following limits by using sandwich theorem.

(a)
$$\lim_{x \to 4^+} \sqrt{x-4} \cos\left(\frac{1}{\sqrt{x-4}}\right)$$

(b)
$$\lim_{x \to +\infty} \frac{e^{\cos x}}{x}$$

(c)
$$\lim_{x \to +\infty} \frac{\cos(\tan x) - \tan(\cos x)}{2x+1}$$

4. Suppose that f(0) = 3, g(0) = 4, $\lim_{x \to 0} \frac{f(x)}{x} = 2$ and $\lim_{x \to 0} \frac{g(x)}{\sin x} = 1$. Find

- (a) $\frac{f(0)}{g(0)}$ (b) $\lim_{x \to 0} \frac{f(x)}{g(x)}$ (c) $\lim_{x \to 0} f(x)$ (d) $\lim_{x \to 0} g(x).$
- 5. Let a be a real number and let $f:\mathbb{R}\to\mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} e^{\frac{1}{2x}} & \text{if } x < 0; \\ 1 & \text{if } x = 0; \\ e^{x} - a & \text{if } x > 0 \end{cases}$$

- (a) If $\lim_{x\to 0} f(x)$ exists, find the value of a.
- (b) Is f(x) continuous at x = 0?
- 6. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} (x-1)\sin(\frac{1}{x^2-1}) & \text{if } x \neq 1; \\ 0 & \text{if } x = 1. \end{cases}$$

Show that f(x) is continuous at x = 1.

- 7. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that
 - f is a positive continuous function;
 - $f(\sqrt{x^2 + y^2}) = f(x)f(y)$ for all real numbers x and y.
 - (a) Show that f(x) = f(|x|) for all real numbers x.
 - (b) Show that $f(\sqrt{n}x) = [f(x)]^n$ for all real numbers x and positive integers n.
 - (c) Show that $f(r) = [f(1)]^{r^2}$ for all rational numbers r.
 - (d) It is known that for all real numbers x, there exists a sequence $\{a_n\}$ of rational numbers such that $\lim_{n\to\infty} a_n = x$.

Show that $f(x) = [f(1)]^{x^2}$ for all real numbers x.